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ADHESION OF A LIQUID-FILLED SPHERICAL MEMBRANE

Martin E. R. Shanahan
Centre des Mat�eeriaux de Grande Diffusion,
Ecole des Mines d’Alès, Alès C�eedex, France

Solid=solid interfacial interactions have been successfully characterised using the
Johnson, Kendall, and Roberts (JKR) analysis for many years now. Following a
suggestion and accompanying analysis by the present author to replace a solid
sphere by a gas-filled, hollow, spherical membrane in contact experiments, we
now propose a liquid-filled ‘‘balloon.’’ Free energy changes due to stretching, bend-
ing, the mechanical contact force and adhesion are assessed and minimised to
obtain an exploitable equation permitting estimation of the energy of adhesion of
the system as a function of various, in principle more easily measured, parameters.

Keywords: Adhesion; ‘‘Balloon’’ test; Capsule; Cell; Contact mechanics; Elastomer;
Spherical membrane

INTRODUCTION

Although adhesion, or adherence, has been recognised as a physical
phenomenon since time immemorial, successful attempts to under-
stand the underlying principles are relatively recent, probably having
commenced some 80 years ago with McBain and Hopkins’ ‘‘mechanical
theory of adhesion’’ [1]. Amongst several complicating factors render-
ing adhesion delicate to assess is the fact that the ‘‘value’’ obtained
depends to a large extent on the way it is measured [2]. The reason
that the removal of a sticking-plaster from the skin at low peel rates
is less painful than at high rates does not mean that the intrinsic
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adhesion is greater in the latter case, but that energy-dissipating
mechanisms are more significant, as shown in early pioneering work
by Gent and Petrich [3]. Overall resistance to separation reflects both
surface and bulk properties. Although bulk energy dissipation
phenomena, usually of a viscoelastic or of a plastic nature, contribute
enormously to macroscopic, pragmatic adhesion effects, they can tend
to cloud the issue as far as the understanding of fundamental interfa-
cial bonding is concerned. Early attempts to understand bonding
mechanisms with mica date back to 1930 [4], but later significant
developments were made in Cambridge (GB) with the work of Tabor
and Winterton [5] and later Israelachvili and Tabor [6, 7], culminating
in the ‘‘surface force apparatus’’ (see also Kendall [2]). In both Australia
and in the United States, Israelachvili and colleagues have over the
last 30 years continued research in this fundamental domain of sur-
face forces, leading to considerable advances in understanding [8].

As hinted at above, dynamic adhesion can be largely dominated by
dissipative mechanisms, and thus static adhesion measurements
would, in general, seem better suited for fundamental investigation
of surface forces. An important step was made with the introduction
of the Johnson, Kendall, and Roberts (JKR) [9] theory explaining the
contact of two spheres and allowing for adhesion between the contigu-
ous materials (neglected in the original Hertz theory [10]). Since the
theory is applicable to (quasi-) static conditions, values of the energy
of adhesion close to that of Dupr�ee, or fundamental, thermodynamic
adhesion, Wo, should be accessible:

Wo ¼ c1 þ c2 � c12; ð1Þ

where c represents the surface (interfacial) free energies of the solids 1
and 2, related directly to surface forces.

The JKR theory has been much exploited over recent years and has
been of immense use in data interpretation for the contact of soft solids
(for twohardsolids theDerjaguin,Muller, andToporov (DMT) theory [11]
is probably better suited). However, a possible disadvantage is that
contact areas between the spheres are usually rather small and, as
contact force tends towards zero, the calculated energy of adhesion
scales with the cube of the contact radius, a. In a fairly recent article,
Shanahan suggested a modification of the JKR test in which a hollow
sphere, rather than a solid sphere, is put into contact with a rigid flat
[12], representing a second sphere of infinite radius. With a slight gas
overpressure within the ‘‘balloon,’’ the radius of the contact area may
not only be greater than for the equivalent JKR test, reducing poten-
tial relative errors in measurement, but also it should be possible to
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decouple surface and volume effects, by changing internal gas
pressure. However, itmay be a delicate procedure tomake the ‘‘balloons’’
in question! This contribution is a sequel to the earlier article in
which, instead of considering the ‘‘balloon’’ to be gas filled, we assume
it to be liquid filled. Such ‘‘balloons’’ may possibly be easier to
manufacture. Inaddition, there issomeresemblancetocellularadhesion
[13]� and that of microcapsules [16].

ELASTIC DEFORMATION OF A LIQUID-FILLED ‘‘BALLOON’’

Stretching

We commence by considering a spherical membrane of thickness, t,
and radius, R, enclosing a volume V (¼ 4pR3=3) of a liquid (Figure 1(a)).
No distinction is made between outer and inner radius since we
assume t<<R. The spherical membrane, or ‘‘balloon,’’ is then brought
to bear on a flat, rigid solid (Figure 1(b)). We shall assume that the

�Although our development here is basically from an engineering, or macroscopic,
standpoint, it has since come to the author’s attention that somewhat similar approaches
to the present have been suggested in a specifically biological, microscopic context, e.g.
Dietrich et al. [14] and Tordeux et al. [15].

FIGURE 1 Schematic representation of ‘‘balloon’’ containing volume, V, of
liquid (a) before and (b) after contact with flat, rigid solid.
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balloon retains a spherical form, except in the flattened zone in direct
contact with the solid, which subtends an angle of 2h. Such a simpli-
fication implies sharp bending at the triple line (A) separating bal-
loon, solid, and exterior. Although compatible with the assumptions
of membrane theory [17], in which stretching is deemed to dominate
over bending, this discontinuity in membrane orientation is physi-
cally unreal and will therefore be addressed below.

To a very good approximation, we may consider the liquid to be in-
compressible and, thus, the volume of the flattened balloon remains as
V. As a consequence, the radius of the truncated sphere becomes
R0 ¼Rþ dR, and the shaded zone of Figure 1(b) (‘‘within’’ the rigid solid,
and corresponding to the continuation of the slightly expanded sphere)
is of volume dV:

dV ¼ pR03

3
ð1� cos hÞ2ð2þ cos hÞ � pR03h4

4
; ð2Þ

where the approximation is valid for h sufficiently small. Thus, for
assumed constant volume V we have:

4pR3

3
� 4pðRþ dRÞ3

3
� pðRþ dRÞ3h4

4
; ð3Þ

leading to

dR
R

� h
2

� �4

; ð4Þ

where terms of order (dR)2, or alternatively or order h8, have been
neglected.

The spherical balloon has an initial surface area, S, of 4pR2, and in
its slightly flattened state after contact its total surface area becomes
Sþ dS:

Sþ dS ¼ pR02 4� 2ð1� cos hÞ þ sin2 h
� �

� 4pR02 1� h4

16

 !
: ð5Þ

After substituting from Equation (4) and simplifying, neglecting terms
of order (dR)2, we obtain

Sþ dS � 4pR2 1þ dR
R

� �
� 4pR2 1þ h

2

� �4
" #

: ð6Þ

We could consider that the initial, undeformed spherical membrane
is just filled with volume V of liquid, without stretching. However,
this would only be useful under special conditions. If there is no initial
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tension in the membrane, then even under its own weight alone it will
deform, somewhat in the style of sessile drop (except, of course, that a
liquid drop has a constant ‘‘membrane tension,’’ or more precisely, sur-
face tension, whereas an elastic membrane under no intrinsic tension
will initially manifest a linearly increasing tension with strain). Thus,
only if there are negligible body forces will the assumption of retained
sphericity be applicable. (This approach could, however, be useful if
the balloon models a cell and is immersed in another liquid of the same
density, where buoyancy alleviates the problem.)

We shall therefore assume an intrinsic, isotropic tension, T, in the
spherical membrane, due to slight overfilling. This tension will be re-
lated to the slight overpressure of the liquid, Dp, by the expression
T¼R, Dp=2. Provided dR=R<< 1, the increase in free energy of the
membrane due to stretching is proportional to the increase in surface
area [18], and thus the supplementary energy, UE, is given by

UE � T:dS � 4pTR:dR � 4pR2T
h
2

� �4

: ð7Þ

We shall assume as a first approximation that the flattening after con-
tact leads to a homogeneous stretching of the membrane, although in
practice this will not be quite correct, as discussed elsewhere [19], due
in part to the method of establishing contact. (The gradual stretching
of the membrane during the establishment of contact will lead to a
(slight) tension gradient, the tension increasing with radial distance
in the contact circle.)

Bending

The above, approximate expression for elastic energy, Equation (7),
neglects any bending effects. This will be reasonable, for a very thin
membrane, everywhere except near the triple line denoted by A in
Figure 1(b). An exact appraisal of bending effects in the vicinity of
the triple line would be complex, so we shall make some simplifying
assumptions. (There will be some interplay in reality: the bending
moment will slightly perturb the sphericity of the free membrane
which will, in turn, diminish bending to some extent.) The ‘‘instan-
taneous’’ change from the flattened membrane in contact with the rigid
solid to the free membrane, at an angle h with respect to the solid, will
occur over a length comparable with the membrane thickness,
t (Figure 2). Thus, the local radius of curvature, q, is of order t=h.
We may treat the membrane locally using beam theory. Then the
elastic energy, per unit length perpendicular to the figure, uB, is
given by

Adhesion of Spherical Membrane 885

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
9
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



uB � EI

2
� 1
q2

� t; ð8Þ

where I¼ t3/12 is the second moment of area of the ‘‘beam’’ cross section
(per unit width, perpendicular to the figure) and E is Young’s modu-
lus. Since the total length of triple line involved is given by 2pRsinh
(neglecting the increment from R to Rþ dR), we obtain the total energy
due to bending, around the triple line, UB, as

UB � EI

2
� 1
q2

: t : 2pRsin h � pt2ERh3

12
; ð9Þ

for h sufficiently small (say, < ca. 1 radian).
We can thus see that

UB

UE
� Et2

3TRh
: ð10Þ

We may conclude that as h decreases, bending effects become more
important. Also, a very thin membrane reduces the relative impor-
tance of UB.

FIGURE 2 Bending of membrane near triple line A in Figure 1(b).
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ENERGY BALANCE FOR EQUILIBRIUM

The basics of determining equilibrium have been considered in an ear-
lier article [12]. We consider the various sources of free energy change
attributable to contact between the liquid-filled membrane and a flat,
rigid solid, i.e., the transition from Figure 1(a) to Figure 1(b). Defining
U as the total free energy, to within an additive constant, we have

U ¼ UE þUB þUM þUS; ð11Þ

where UE and UB are the elastic strain energies dealt with above, UM

is the mechanical energy corresponding to movement of the force of ap-
plication, P, in Figure 1(b) (which may simply be the weight of the
membrane plus contained liquid, in the geometry shown), and US is
the energy of adhesion:

UM � �P½R� ðRþ dRÞ cos h�; ð12Þ

US ¼ �pa2Wo � �pWoðRþ dRÞ2 sin2 h; ð13Þ

where a is contact radius, and Wo is defined by Equation (1), 1 and 2
representing membrane and rigid solid.

Using Equations (7), (9), and (11)–(13), and truncating at the lead-
ing term in h for each contribution in order to simplify, we find

U � pR2Th4

4
þ pt2ERh3

12
� PRh2

2
� pWoR

2h2: ð14Þ

At equilibrium, dU=dh, and thus

Wo �
Th2

2
þ t2Eh

8R
� P

2pR
: ð15Þ

Clearly, Equation (15) will only be valid for evaluating adhesion en-
ergy, Wo, for reasonably small values of h, since higher powers have
been neglected, but the principle is clearly shown. Anyway, if h is
too large, the hypotheses adopted at the outset will become invalid.
This would occur, for example, if P were too large.

DISCUSSION

Equation (15) is the main result of this article, and it is instructive to
inject a few reasonable values into it to see what behaviour may be
expected. Let us take R¼ 10�2m, t¼ 10�4m, and E¼ 1MPa. We must
assume a suitable value for intrinsic tension, T. By analogy with the
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treatment of sessile, or pendant, liquid drops, we may define a ‘‘balloon
number,’’ B, equivalent to a capillary number [20]:

B ¼ ~qqgR2

T
; ð16Þ

where ~qq is effective (average) density of the balloon (with t<<R, essen-
tially the density of the liquid contained, reduced by the density of the
exterior medium, to allow for buoyancy) and g is gravitational acceler-
ation. For sphericity to be well approximated, B should be less than ca.
1 (membrane tension then dominating over gravity). Taking the bal-
loon to be water-filled, this condition leads to a value of T� 1Nm�1.
How do we obtain this tension in practice? One method may be to pre-
pare the balloon above the temperature at which it is to be used and
then, on cooling, with a coefficient of thermal expansion greater than
that of the contained liquid, shrinking will lead to a tension. (Or con-
versely, if the thermal expansion coefficient of the liquid is greater
than that of the membrane, prepare the balloon at reduced tempera-
ture.) A tension of, say, 3Nm�1 in a rubber membrane of thickness
10�4m, means a stress of T=t � 3� 104Pa, or 3% of the (assumed)
Young’s modulus, which is quite reasonable.

Let us assume that the balloon remains in contact with the rigid
solid under its own weight alone; P ¼ 4pR3~qqg=3. Neglecting air buoy-
ancy, the weight and thickness of the membrane, and assuming the
balloon to be water filled, we find P� 4.1� 10�2 N.

Equation (15) can now be rearranged to give a quadratic in h to es-
tablish this value for a given set of parameters:

h2 þ t2Eh
4TR

� P

pTR
� 2Wo

T
¼ 0; ð17Þ

or

h ¼ t2E

8TR
1þ 64TR2

t4E2

P

pR
þ 2Wo

� �" #1=2
�1

8<
:

9=
;; ð18Þ

where the positive root has been taken for physical reasons. With the
above values, and treating Wo, the intrinsic energy of adhesion, as a
variable, we may compare values of h (and equivalently, contact
radius, a) for differing degrees of adhesion. Values are presented in
Table 1. In addition, values are given of the ratio UB=UE, obtained
from Equation (10). It can be seen that even at (assumed) zero ad-
hesion, there is some flattening of the spherical membrane in contact
with the flat, rigid surface. This is, of course, simply due to the force
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P (weight). If adhesion is zero and total buoyancy prevails (P¼ 0),
Equation (18) shows indeed that h becomes zero, as expected. Compar-
ing values of Wo, h, and a in Table 1, it can be seen that the sensitivity
of subtended semiangle, h, or contact radius, a, to variations in energy
of adhesion, Wo, is perhaps not as great as may be hoped for from an
experimental standpoint. Nevertheless, h and a clearly do rise with
Wo. It is clear from Table 1 that the bending energy, UB, is quite com-
parable with the stretching energy, UE, in order of magnitude, if tend-
ing to be somewhat smaller in the given examples. Thus, bending
effects near the contact triple line must be taken into account.

Towards higher values of h, the validity of values of Wo clearly
decreases due to the approximations made in the foregoing analysis.
If the analysis presented here is exploited experimentally, it is sug-
gested that the available parameters be adjusted (within the realms
of possibility!) such that angle h is not too large, in order to minimise
truncation errors in the development. The membrane thickness, pre-
tension, and radius may possibly be chosen as a function of the range
Wo expected.

Finally, note from Equation (18) that if the applied force, P, becomes
negative (inversion of system discussed above), then h becomes zero for

P ¼ �2 pRWo: ð19Þ

Thus, the pull-off force is given by Equation (19), which is the same
expression as previously found in the DMT theory [11] and with a
gas-filled balloon [12]. This is different from the JKR theory [9], where
the pull-off force is 25% smaller.

TABLE 1 Calculated Values of Angle, h, Corresponding to
Half of Flattened Contact Zone of ‘‘Balloon’’ (from Equation
(18)), Equivalent Contact Radius, a, and Ratio, UB=UE, of
Bending to Stretching Elastic Energies (from Equation (10))

Wo (mJm�2) h (rad.) a(m�102) UB=UE

0 0.620 0.58 0.18
20 0.630 0.59 0.18
50 0.645 0.60 0.17

100 0.670 0.62 0.17
200 0.715 0.65 0.16
500 0.835 0.74 0.13

1000 1.010 0.85 0.11

E¼1 MPa; t¼10�4m; t¼ 3Nm�1; R¼10�2m; P�4.1�10�2 N.
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CONCLUSION

Following the analysis of a gas-filled balloon in contact with a flat,
rigid solid, which may possibly supplement the JKR analysis of solid
sphere contact in surface force research, we suggest here an analysis
of a contacting liquid-filled balloon. Free energy (to within an additive
constant) is attributed both to stretching and to bending of the initially
spherical liquid-filled membrane, as contact is made with a flat, rigid
solid. The remaining free energy changes are related to mechanical
force causing contact and to adhesion. Minimisation of overall free
energy leads to an expression relating the angle subtended by the flat-
tened, contacting zone of the membrane, to the energy of adhesion
membrane=solid. Putting typically expected values of the various
parameters into the final equations shows the test to be quite plausible
and possibly useful in various areas of research into surface forces,
including cell adhesion and the contact of liquid-filled capsules.
As in the earlier analysis of a gas-filled balloon, the present system
possesses the advantage of having potentially decoupled surface and
volume effects.
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